Kubeflow Setup

Back Tool Guide Sharing Guide

Kubeflow is an open-source Cloud Native platform for machine learning.

The Kubeflow project is dedicated to making deployments of machine learning workflows on Kubernetes simple, portable and scalable, providing a straightforward way to deploy systems for ML to diverse infrastructures. Kubeflow comes with several useful components, including JupyterHub, and has support for GPU-accelerated compute. Check out the official documentation at kubeflow.org.

Page Index

  1. Installing/Configuring Docker and Kubernetes (nvidia-distribution)
  2. Installing Kubeflow with Minikube (Single Node Only!)
  3. Installing Kubeflow on Kubernetes (Multiple Nodes)
  4. Customising the Spawner GUI
  5. Common Issues
    • GitHub Rate Limit
    • Kubernetes Dashboard
    • Common Dataset Volume
    • JupyterLab
    • No Internet access for Notebook
    • Culling Idle Notebook
    • Using NGC Images

Installing Kubenetes


The official install guide for Kubernetes on NVIDIA GPUs (KONG) is available from NVIDIA.

However, we will not be following the full guide here.

To allow Kubeflow to work without issues, we have to set the default container runtime to NVIDIA’s.

sudo nano /etc/docker/daemon.json

Add the following line under the first level:

"default-runtime": "nvidia",

Your file should end up looking something like this:

    "default-runtime": "nvidia",
    "runtimes": {
        "nvidia": {
            "path": "nvidia-container-runtime",
            "runtimeArgs": []

Do sudo pkill -SIGHUP dockerd to restart the Docker daemon.

To test: docker run --rm nvidia/cuda nvidia-smi

Installing Kubeflow with Minikube (Single Node Only!)

Minikube is a tool that makes it easy to run Kubernetes locally on a single node. This is very useful if, for example, you can a 4 GPU machine (e.g. DGX Station) that you are sharing among a small team, or have many infrequent users that may need to use it (e.g. in a University).

Install Minikube

Run the following commands:

curl -Lo kubectl https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/linux/amd64/kubectl && chmod +x kubectl && sudo cp kubectl /usr/local/bin/ && rm kubectl
curl -Lo minikube https://storage.googleapis.com/minikube/releases/v0.28.2/minikube-linux-amd64 && chmod +x minikube && sudo mv minikube /usr/local/bin/
export KUBECONFIG=$HOME/.kube/config
sudo -E minikube start --vm-driver=none --feature-gates=DevicePlugins=true

In case you get an error about Docker version:

sudo minikube delete
sudo service docker stop
sudo apt install docker-ce=18.06.1~ce~3-0~ubuntu
sudo apt install nvidia-docker2=2.0.3+docker18.06.1-1 nvidia-container-runtime=2.0.0+docker18.06.1-1

And then create a new minikube cluster:

sudo -E minikube start --vm-driver=none --feature-gates=DevicePlugins=true

If all went well, you should see the following outout:

Starting local Kubernetes v1.10.0 cluster...
Starting VM...
Getting VM IP address...
Moving files into cluster...
Setting up certs...
Connecting to cluster...
Setting up kubeconfig...
Starting cluster components...
Kubectl is now configured to use the cluster.
	The 'none' driver will run an insecure kubernetes apiserver as root that may leave the host vulnerable to CSRF attacks

Create the NVIDIA daemonset (driver)

kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v1.10/nvidia-device-plugin.yml

Output: daemonset "nvidia-device-plugin-daemonset" created

Please wait for about 30 seconds and then check if the GPUs on your node can be accessed from minikube:

kubectl get nodes -o=custom-columns=NAME:.metadata.name,GPUs:.status.capacity.'nvidia\.com/gpu'

NAME       GPUs
minikube   4

Install ksonnet

You might want to check the latest ksonnet release on the GitHub releases page.

wget https://github.com/ksonnet/ksonnet/releases/download/v0.13.1/ks_0.13.1_linux_amd64.tar.gz
tar -xzf ks_0.13.1_linux_amd64.tar.gz
sudo cp ks_0.13.1_linux_amd64/ks /usr/local/bin/

Install Kubeflow using ksonnet

Environment Setup

# Create a namespace for kubeflow deployment
kubectl create namespace ${NAMESPACE}

# https://github.com/kubeflow/kubeflow/releases

# Initialize a ksonnet app. Set the namespace for its default environment.
ks init ${APP_NAME}
cd ${APP_NAME}
ks env set default --namespace ${NAMESPACE}

Install Kubeflow components

ks registry add kubeflow github.com/kubeflow/kubeflow/tree/${VERSION}/kubeflow
ks pkg install kubeflow/core@${VERSION}

Only core is a must to install. The rest are extras:

ks pkg install kubeflow/tf-serving@${VERSION}
ks pkg install kubeflow/argo@${VERSION}
ks pkg install kubeflow/katib@${VERSION}
ks pkg install kubeflow/seldon@${VERSION}
ks pkg install kubeflow/mpi-job@${VERSION}
ks pkg install kubeflow/pytorch-job@${VERSION}
ks pkg install kubeflow/examples@${VERSION}

Final Steps

# Create templates for core components
ks generate kubeflow-core kubeflow-core

# Enable collection of anonymous usage metrics
# Skip this step if you don't want to enable collection.
ks param set kubeflow-core reportUsage true
ks param set kubeflow-core usageId $(uuidgen)
ks param set kubeflow-core jupyterHubServiceType NodePort
#ks param set kubeflow-core jupyterNotebookPVCMount "null"

# Deploy Kubeflow
ks apply default -c kubeflow-core

After running the setup steps, use kubectl get pods -n kubeflow to check if all the pods have been succesfully created.

To expose JupyterHub on your machine’s IP address:

PODNAME=`kubectl get pods --namespace=${NAMESPACE} --selector="app=tf-hub" --output=template --template=""`
kubectl expose pod $PODNAME --type=NodePort --name tf-service --namespace kubeflow

Installing Kubeflow on Kubernetes (Multiple Nodes)


Customising the Spawner GUI

The gist of it is edit the jupyterhub-config ConfigMap in order to change the configuration file that is loaded by JupyterHub (jupyterhub_config.py).

You may use the Kubernetes Dashboard. You will need to change the namespace to kubeflow in order to see the correct set of resources.

edit configmap in kubernetes dashboard

Or kubectl:

kubectl edit configmap jupyterhub-config -n kubeflow

To change the form itself, you need to edit the HTML5 content that is returned by KubeFormSpawner._options_form_default().

The rest of the file controls various other JupyterHub configuration.


Common Issues

Rate Limit from GitHub

prepend a github token to the command
GITHUB_TOKEN=xxxXXXxxx ks <command>

Kubernetes Dashboard

Find out more about Kubernetes Dashboard.

  1. Minikube
sudo minikube dashboard &

The dashboard will be available on localhost:30000.

  1. Other

Please see Kubernetes Dashboard GitHub repository.

Common Dataset Volume

To create a shared volume for datasets:

  1. wget https://raw.githubusercontent.com/NVAITC/workstation-setup-guide/master/kubeflow_files/dataset_volume.yaml
  2. nano dataset_volume.yaml and edit the volume size to your requirements
  3. kubectl create -f dataset_volume.yaml -n kubeflow

Modify the jupyterhub_config.py file in jupyterhub-config ConfigMap:

# if pvc_mount and pvc_mount != 'null':
	            'name': 'volume-datasets',
	            'persistentVolumeClaim': {
	                    'claimName': 'claim-datasets'
	            'mountPath': pvc_mount+'/datasets',
	            'name': 'volume-datasets'

Using JupyterLab instead

Replace ?tree in the URL with lab. (Yes, it’s that easy.)

No Internet access from Jupyter Notebooks

Apply the following config. You can do so via GUI (Kubernetes Dashboard)

apiVersion: v1
kind: ConfigMap
  name: kube-dns
  namespace: kube-system
  upstreamNameservers: |

Culling Idle Notebooks

Add the following to the JupyterHub configmap.

c.JupyterHub.services = [
        'name': 'wget-cull-idle',
        'admin': True,
        'command': ['wget', 'https://raw.githubusercontent.com/jupyterhub/jupyterhub/master/examples/cull-idle/cull_idle_servers.py', '-N']

        'name': 'cull-idle',
        'admin': True,
        'command': ['python', 'cull_idle_servers.py', '--timeout=3600']

NGC Images

Coming soon